Urán ♅
Urán je prvý z vonkajších planét, ktorý bol objavený až v roku 1781. Najväčšou zaujímavosťou je, že sklon rotačnej osi planéty k obežnej rovine je 98° a teda k Slnku nie sú najbližšie oblasti blízko rovníka, ale striedavo oba póly. Na Uráne by sme tiež nemohli pozorovať ročné obdobia. Ako ostatné veľké vonkajšie planéty, je aj Urán plynnouo planétou. Dá sa rozoznať podľa jasne modrozeleného sfarbenia, ktoré je spôsobené vysokým obsahom metánu v atmosfére. Rozmermi sa blíži k Neptúnu. Jeho pevné jadro sa skladá z kovov a kremičitých hornín, priemer má asi 440 000 km. Jadro obklopuje ľadový plášť z metánu, čpavku a vody so širkou 10 000 km. Prevažujúcu zložku atmosféry tvorí vodík a hélium, v menšom množstve metán a acetylén. . Najnižšie teploty –220°C boli namerané na rozhraní medzi troposférou a stratosférou. Zaujímavosťou je, že oba póly majú rovnakú teplotu bez ohladu na to, ktorý z nich je práve natočený k Slnku. Magnetické pole Uránu je natočené o 60° vzhľadom k osi rotácie a má rovnakú intenzitu ako má zemské magnetické pole, pole Uránu je však budené elektricky vodivým oceánom čpavku a vody pod obrovským tlakom pod hranicou plynnej atmosféry. Urán, podobne ako dve najväčšie planéty slnečnej sústavy má niekoľko prstencov. 9 z nich bolo objavených pozemskými pozorovateľmi, viac sa o nich dozvedeli vedci až po prelete sondy Voyager 2, ktorý tiež objavil dva nové. Systém prstencov je mladý a určite nevznikol súčasne s planétou. Vonkajšiu hranicu sústavy prstencov tvorí vonkajší okraj epsilonu, ktorý je vo vzdialenosti 25 500 km od hornej vrstvy oblačnosti planéty. Najväčší a najbližší prstenec má šírku až 2500 km.
Fyzikálne a chemické vlastnosti
Urán je približne 14,5-krát hmotnejší ako Zem, takže je najľahší zo všetkých plynných obrov. Jeho hustota je 1,27 g/cm³, čo je druhá najmenšia hodnota z planét v slnečnej sústave po Saturne.] Priemer planéty je o málo väčší než priemer Neptúna a je približne 4-krát väčší ako priemer Zeme, ale Urán je ľahší ako menší Neptún.
Jupiter a Saturn sú zložené takmer výhradne z vodíka. Urán na rozdiel od nich obsahuje len 83 % vodíka, ďalej 15 % hélia a stopové množstvá metánu a ďalších látok. Jadrá Urána a Neptúna sa v mnohých smeroch podobajú jadrám Jupitera a Saturna, nemajú však masívnu obálku z tekutého kovového vodíka. Zdá sa, že Urán nemá výrazne diferencované kamenné jadro ako Jupiter a Saturn, ale jeho materiál je viac-menej rovnomerne rozložený. Uránova modrozelená farba je spôsobená absorpciou červeného svetla jeho metánovou atmosférou.
Pomerne rýchla rotácia planéty je príčinou jej zreteľného sploštenia na póloch.[9] Pre popis planéty sa preto používa rotačný elipsoid, u ktorého je povrch umelo definovaný ako miesto, kde sa atmosférický tlak rovná 1 baru. Ako rovníkový polomer sa udáva hodnota 25 559 km ±4 km, a polárny polomer je 24 973 km ±20 km. Takto definovaný povrch planéty sa používa ako nulová nadmorská výška.
Dráha a rotácia
Urán obieha Slnko v strednej vzdialenosti 2 870 972 220 km. Planéta sa približuje k Slnku najviac na 2 735 555 035 km a vzďaľuje na 3 006 389 405 km. Okolo Slnka obehne raz za 84,07 rokov a okolo svojej osi sa otočí za 17 hodín a 14 minút.
Odklon osi
Jedným z najvýraznejších znakov Urána je sklon rovníka k rovine jeho dráhy o 97,86°, takže planéta rotuje retrográdne (spätne). Rovina obehu Urána je k rovine ekliptiky sklonená len pod uhlom 0,769 86°, preto rotačná os leží takmer v rovine ekliptiky. V dôsledku toho svieti Slnko počas Uránovho roka striedavo na severný a južný pól. Deň na póle trvá 42 rokov a nasleduje po ňom 42 rokov dlhá noc. Iba na dvoch miestach obežnej dráhy, keď je planéta natočená rovníkom k Slnku, Slnko vychádza a zapadá obdobne ako na Zemi. Prstence spoločne s mesiacmi obiehajú v rovine Uránovho rovníka, takže sa celá Uránova sústava v podstate okolo Slnka „valí“.
Posledná snímka Urána, ktorú vytvorila sonda Voyager 2. Zo Zeme nikdy nie je možné vidieť Urán ako kosáčik.
V čase preletu Voyagera 2 bol Uránov južný pól nasmerovaný takmer presne k Slnku. Samotné označenie tohto pólu je predmetom diskusií. O Uráne možno povedať, že buď má odklon osi rotácie o niečo málo viac ako 90°, alebo že má odklon osi rotácie o niečo málo menej než 90° a rotuje v spätnom smere. Tieto dva opisy presne zodpovedajú skutočnému správaniu planéty; výsledkom odlišných definícií je len určenie, ktorý pól je severný a ktorý južný. Keďže rotačná os nie je presne rovnobežná s rovinou ekliptiky, nachádza sa jeden pól nad rovinou a druhý pod rovinou podobne ako pozemské póly. Vzhľadom na medzinárodnú dohodu sa využíva označenie severný pól pre ten, ktorý sa nachádza nad rovinou ekliptiky bez ohľadu na smer, ktorým sa planéta otáča.
Možným vysvetlením takejto nezvyčajnej orientácie rotačnej osi je teória kolízie Urána s veľkou protoplanétou, ktorá by mohla vysvetliť tiež stratu vnútorného tepla. Simulácie ju však nepotvrdzujú, pretože osi jeho mesiacov nie sú odklonené. Z tohto dôvodu sa uvažuje aj o vplyve hustej atmosféry, ktorá kvôli sklonu osi rotácie cirkuluje zvláštnym spôsobom. Ďalšou možnosťou vysvetlenia je dočasná prítomnosť veľkého mesiaca. Ak by podľa vykonaných simulácií mal Urán v minulosti mesiac s 1 % svojej hmotnosti (teda teleso porovnateľné s veľkosťou planéty Mars), mohol by po 2 miliónoch rokoch skloniť rotačnú os planéty na súčasnú úroveň.
Je zrejmé, že Uránov extrémny odklon osi spôsobuje aj radikálne sezónne výkyvy počasia. Počas preletu Voyagera 2 bol pásový vzor atmosféry Urána veľmi jemný a pokojný. Pozorovanie Hubblovho vesmírneho ďalekohľadu vo chvíli, keď Slnko osvetľovalo Uránov rovník (presne nad Uránovým rovníkom bolo Slnko v roku 2007), zase ukazovalo oveľa zreteľnejšie pásovanie.
Vznik a vývoj planéty
Predpokladá sa, že Urán spolu s ostatnými plynnými obrami vznikol z protoplanetárneho disku pred 4,6 až 4,7 miliardami rokov. Existujú dve hlavné teórie, ako mohli veľké plynné planéty vzniknúť a sformovať sa do súčasnej podoby: teória akréciea teória gravitačného kolapsu.
Teória akrécie predpokladá, že sa v protoplanetárnom disku postupne zlepovali drobné prachové častice, čím začali vznikať väčšie častice a následne balvany. Neustálymi zrážkami častice rástli, až vznikli telesá s veľkosťou niekoľko tisíc kilometrov. Tieto veľké železokamenité telesá začali vplyvom veľkej gravitácie strhávať do svojho okolia plyn a prach, ktorý sa postupne nabaľoval na pevné jadro, až planéta dorástla do dnešnej veľkosti
Na druhej strane, teória gravitačného kolapsu predpokladá, že veľké planéty nevznikali postupným zlepovaním drobných častíc, ale pomerne rýchlym zmrštením z nahusteného zhluku v zárodočnom disku podobným spôsobom, ktorý je známy pri vzniku hviezd. Podľa teórie niekoľkých gravitačných kolapsov, ktorej autorom je Alan Boss z Carnegie Institution of Washington, bol vznik plynných obrov krátky.
Je pravdepodobné, že Urán nevznikol na súčasnom mieste, pretože v tejto vzdialenosti od Slnka zrejme nebolo v čase formovania planét dostatočné množstvo zárodočného materiálu. Jeho zrod (či akréciou alebo gravitačným kolapsom) preto prebehol na miestach bližších k Slnku a Urán potom postupne migroval na svoju súčasnú polohu.
Atmosféra
Kvôli výraznému odklonu rotačnej osi prijímajú polárne oblasti od Slnka oveľa viac energie ako rovníkové oblasti. Napriek tomu je teplota v oblasti rovníka rovnaká ako na póloch. Mechanizmus spôsobujúci tento jav zatiaľ vedci nepoznajú.
Vzhľad atmosféry Urána je väčšinu času jednoliaty bez viditeľnej štruktúry ako vo viditeľnom, tak aj ultrafialovom spektre. Jedným z možných vysvetlení je, že Urán nemá takmer žiadne zdroje vnútorného tepla v porovnaní s inými plynnými obrami, a preto je dynamika jeho atmosféry veľmi slabá. Na snímkach sondy Voyager 2 sa zistilo desať nevýrazných svetlých škvŕn, ktoré neskôr pozoroval aj Hubblov teleskop a boli interpretované ako mračná
Mesiace
Prstence Urána spolu s najväčšími mesiacmi na snímke observatória ESO
Urán má 27 známych mesiacov. Podobne ako aj pri samotnej planéte, ani pri pomenovaní mesiacov Urána sa nedodržala tradícia – nazývajú sa podľa postáv z hier Williama Shakespeara. Najväčší a najhmotnejší Uránov mesiac je Titania. Povrchy veľkých mesiacov sú zložené prevažne z vodíkového ľadu a skalnatého materiálu tmavej farby.[9] Všetky mesiace nie sú natoľko jasné, aby ich bolo možné pozorovať bežnými ďalekohľadmi.
Mesiace sa dajú rozdeliť do troch skupín, ktoré sa zvyčajne nazývajú rodiny.
Vnútorné mesiace s pravidelnými dráhami obiehajú v blízkosti planéty po kruhových dráhach ležiacich takmer presne v rovine rovníka planéty. Do tejto rodiny patria Ophelia, Bianca, Cressida, Desdemona, Juliet, Portia, Rosalind, Belinda, Puck, Perdita, Mab a Cupid. Všetky dráhy ležia medzi uránovými prstencami alebo v ich tesnej blízkosti.
Vonkajšie mesiace s pravidelnými dráhami obiehajú v strednej vzdialenosti až za prstencami. Ich dráhy sú tiež prakticky kruhové a ležia takmer presne v rovine rovníka. Do tejto rodiny patria najväčšie mesiace Urána Miranda, Ariel, Umbriel, Titania a Oberon.
Mesiace s nepravidelnými dráhami obiehajú vo väčších vzdialenostiach od planéty po viac či menej excentrických dráhach. Ide pravdepodobne o zachytené transneptúnske telesá. Do tejto rodiny patria Caliban, Stephano, Trinculo, Sycorax, Margaret, Prospero, Setebos, Francisco a Ferdinand.
Zdroj : wikipedia, google