Slnko ☉

18.03.2012 14:35

Slnko je hviezda našej planetárnej sústavy. Planéta Zem obieha okolo Slnka. Je to naša najbližšia hviezda a zároveň najjasnejšia hviezda na oblohe. Gravitačné pôsobenie Slnka udržiava na obežných dráhach okolo Slnka všetky objekty slnečnej sústavy. Jeho energia je nevyhnutná pre život na Zemi. Astronomický symbol pre Slnko je kruh s bodom vo vnútri.

Slnko patrí medzi hviezdy hlavnej postupnosti, čo znamená, že v jeho jadre prebieha premena vodíka na hélium a že vďaka tomu zostáva dlhodobo stabilné. Jeho spektrálny typ je G2, čo znamená, že ide o žltú hviezdu. Hmotnosť Slnka (2×1030 kg) predstavuje 99,87% hmotnosti celej slnečnej sústavy. Na všetky telesá Slnečnej sústavy dopadá elektromagnetické žiarenie zo Slnka, ktoré dosahuje celkový žiarivý výkon 3,826.1026 W. Vďaka tomuto žiareniu je možný život na Zemi. Väčšina telies vrátane všetkých planét obieha Slnko v smere jeho rotácie. Tento smer sa nazýva aj priamy (prográdny) smer a je dedičstvom po rotácii pôvodnej pracho-plynovej hmloviny, z ktorej všetky telesá slnečnej sústavy vznikli. Všetky ostatné telesá v slnečnej sústave sú viditeľné len vďaka tomu, že odrážajú slnečné svetlo, alebo žiaria preto, lebo boli k žiareniu vybudené slnečnou energiou (napr. kométy alebo polárna žiara).

Slovom slnko s malým s sa v niektorých prípadoch označuje aj hviezda alebo primárne hviezdne teleso, okolo ktorého obiehajú objekty.

 

Stavba Slnka



Vnútorná stavba Slnka

Slnečné teleso a jeho atmosféra – heliosféra sa delí na niekoľko vrstiev. Vrstvy Slnka od stredu na povrch sú nasledovné:

Jadro

Jadrom Slnka sa považuje oblasť, ktorá siaha do vzdialenosti 175 000 kilometrov od stredu. Má teplotu 14 000 000 K, tlak v strede 150×109 atmosfér. V jadre je sústredených až 49,9% celkovej slnečnej hmotnosti. Pri takejto teplote sú už atómy rozložené na jadrá a samostatne sa pohybujúce elektróny. Pod vplyvom obrovskej teploty a tlaku tu prebieha termonukleárna reakcia (nukleárna fúzia), premieňajúca ľahký vodík (prócium) na hélium. Reakcia prebieha v troch fázach. Každú sekundu sa premení okolo 8,9×1037 protónov (jadier vodíka) na jadrá hélia (inými slovami: 700 miliónov ton vodíka fúzuje na 695 miliónov ton hélia). Zo štyroch jadier atómov ľahkého vodíka – prócia vzniká jedno jadro hélia. Každú sekundu v jadre prebehne rádovo 1038 reakcií. Drvivá väčšina uvoľnenej energie má formu gama žiarenia a postupuje do radiačnej zóny.

Fotosféra


Fotosféra je viditeľný povrch Slnka, na ktorom sa zjavujú tmavé miesta – slnečné škvrny alebo naopak jasné fakulové polia. Má hustotu 1023 častíc/m3. Teplota je asi 5 700 K. Fotosféra je najchladnejšia časť Slnka. Jej hrúbka je asi 200 až 300 km. Na povrchu Slnka je pozorované veľké množstvo vertikálnych pohybov. Celú fotosféru pokrývajú slnečné granuly – stúpajúce a klesajúce plazmové útvary s veľkosťou asi 1 000 km. Ich predĺžením vznikajú spikuly, niekoľko tisíc kilometrov vysoké plazmové útvary zasahujúce až do chromosféry. Ďalšie vertikálne pohyby sa nazývajú supergranulácie, obrie cely a slnečné oscilácie. Slnečné oscilácie vznikajú vďaka zvukovým vlnám v konvektívnej vrstve Slnka. Ich skúmaním sa zaoberá helioseizmológia.

Koróna

Koróna je hrubá 15 000 km až 1 alebo 2 milióny km. Je to najvrchnejšia a najteplejšia vrstva slnečnej atmosféry. Možno ju pozorovať počas úplných zatmení Slnka alebo pomocou koronografu. Jej teplota dosahuje 1 000 000 K, čiže je asi stokrát teplejšia než fotosféra. Príčina vysokej teploty koróny dodnes nie je uspokojivo vysvetlená.

Je extrémne riedka, jej hustota dosahuje len 1011 častíc/m3. Aj v koróne sa vyskytujú erupcie a protuberancie. Rozpínaním koróny do okolitého priestoru vzniká slnečný vietor. Prúdenie tepla nastáva smerom z koróny do nižších oblastí Slnka. Toto tepelné rozhranie, kde sa teplota náhle mení z asi milióna Kelvinov v spodnej koróne na asi 20 000 Kelvinov vo vrchnej chromosfére, je práve prechodová oblasť. Hmota koróny neustále uniká do okolitého priestoru rýchlosťou asi milión ton každú sekundu. Toto množstvo sa zvyšuje až na miliardy ton pri slnečných erupciách. Náhle úniky hmoty sa nazývajú výrony koronálnej hmoty alebo ejekcia koronálnej hmoty (po anglicky coronal mass ejection, skratka CME). V užšom zmysle siaha koróna do vzdialenosti niekoľkých slnečných polomerov, v širšom zmysle za vrchnú časť koróny možno považovať celú oblasť, kam siaha slnečný vietor, až po heliopauzu.

 

Vznik a vývoj



Slnko pravdepodobne vzniklo spolu s celou slnečnou sústavou zo slnečnej hmloviny. Pôvodná medzihviezdna hmota sa zhruba pred 7 miliardami rokov rozpadla na malé a relatívne husté útvary – globuly. Materiál v strede globuly sa vďaka gravitačnej kontrakcii postupne zahusťoval. Odstredivá sila zrýchľujúcej sa rotácie hmloviny sploštila pôvodne guľatú globulu do protoplanetárneho disku. V jeho strede sa utvorila protohviezda, v ktorej strede naďalej rástla hustota a tlak, až kým sa nezapálili termojadrové reakcie a Slnko sa nedostalo do stabilného štádia hlavnej postupnosti.

Dĺžka života hviezdy typu G2 je približne 10 miliárd rokov (10 Ga) a Slnko vzniklo asi pred 4,5 miliardami rokov. Čaká ho teda ešte približne ďalších 5 miliárd rokov stabilnej existencie. Potom sa zásoby vodíka v jeho jadre minú, termojadrové reakcie na chvíľu prestanú a tlak žiarenia prestane pôsobiť proti tlaku jeho vlastnej gravitácie. Jadro sa zmrští, jeho teplota a tlak sa zvýši a dôjde k syntéze hélia na ďalšie chemické prvky, napríklad uhlík a kyslík. To mu zabezpečí stabilitu na ďalších pár miliónov až miliárd rokov. Vonkajšie vrstvy sa však začnú rozpínať, rednúť a chladnúť. Slnko prejde do štádia červeného obra. Jeho rozpínajúci sa povrch pohltí Merkúr, Venušu a možno aj Zem.

Zásoby hélia v jadre však tiež nie sú večné. Po ich minutí opäť dôjde k zastaveniu jadrových reakcií a tentoraz už nebude mať čo zabrániť jadru Slnka v gravitačnom kolapse. Jadro skolabuje, scvrkne sa a zmení sa na bieleho trpaslíka – malú hustú horúcu hviezdu svietiacu však iba z nažiarených zásob. Vonkajšie vrstvy Slnka sa oddelia a vytvoria pomaly sa zväčšujúcu planetárnu hmlovinu. Biely trpaslík napokon vychladne. Hmlovina sa rozptýli a môže slúžiť ako časť materiálu pre vznik novej hviezdy a planetárnej sústavy.

 

 

Zdroj : wikipedia, google